
ALGEBRAIC CURVES : SOLUTIONS SHEET 5

Unless otherwise specified, k is an algebraically closed field.

Exercise 1. Let n ≥ 1 and I, J ⊆ k[X0, . . . , Xn] be ideals. For d ≥ 0 we denote
by k[X0, . . . , Xn]d the subspace of forms of degree d and Id = I ∩ k[X0, . . . , Xn]d
(resp. Jd = J ∩ k[X0, . . . , Xn]d). Show that:

(1) If I, J are homogeneous, then I + J , IJ and rad(I) are homogeneous.
(2) If I is homogeneous, I is prime if, and only if, for all homogeneous f, g ∈

k[X0, . . . , Xn], fg ∈ I ⇒ f ∈ I or g ∈ I.
(3) I is homogeneous if, and only if, I =

⊕
d≥0 Id (the right-hand side being

a direct sum of abelian groups). Give an example of how this fails for
non-homogeneous ideals.

(4) If I is homogeneous, then there is a well-defined notion of forms of degree
d in Γ = k[X0, . . . , Xn]/I and the corresponding spaces Γd, d ≥ 0 are
finite-dimensional over k.

Solution 1.
(1) Assume I, J homogenous. Fix homogenous generators f1, . . . , fn of I and

g1, . . . , gn of J . Then
I + J = ⟨fi, gj | i, j⟩
IJ = ⟨figj | i, j⟩

are also homogenous, as products of homogenous polynomials are also ho-
mogenous.

Finally, to prove that Rad(I) is homogeneous, recall that a polynomial
is contained in a homogeneous ideal I if and only if all of its homogeneous
parts are contained in I (Lemma 3.1). Let F = F0 + · · · + Fd be an
element of Rad(I) where Fi is the homogeneous part of degree i. Suppose
by contradiction that there exists i with Fi /∈ Rad(I). If d′ is the maximal
such i, then

F0 + · · ·+ Fd′ = F︸︷︷︸
∈Rad(I)

− Fd︸︷︷︸
∈Rad(I)

− · · · − Fd′+1︸ ︷︷ ︸
∈Rad(I)

∈ Rad(I).

Hence we may assume that d′ = d, i.e. Fd /∈ Rad(I). Let now N > 0
be large enough so that FN ∈ I. As I is homogeneous, it contains all
the homogeneous parts of FN (by Lemma 3.1). The homogeneous part of
degree Nd of FN is FN

d , so FN
d ∈ I. In particular, we have Fd ∈ Rad(I),

contradiction. Therefore, all the Fi have to be contained in Rad(I) to begin
with, i.e. Rad(I) is homogeneous.
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(2) Clearly, I prime implies for all homogeneous f, g ∈ k[X0, . . . , Xn], fg ∈
I ⇒ f ∈ I or g ∈ I.

Now suppose that I is an homogenous ideal, such that for all homo-
geneous f, g ∈ k[X0, . . . , Xn], fg ∈ I ⇒ f ∈ I or g ∈ I. Let f, g ∈
k[X0, . . . , Xn] be such that fg ∈ I. Take their decomposition into ho-
mogenous components f =

∑d
i=0 fi and g =

∑e
i=0 gi, where fi, gi are

homogenous of degree i. Assume by contradiction that f, g /∈ I. Then by
Lemma 3.1 there exist d′, e′ such that fd′ , ge′ /∈ I, and as in the proof that
Rad(I) is homogeneous we may suppose that in fact d′ = d and e′ = e. As
fg ∈ I, the homogeneous part of degree de of fg, which is fdge, is contained
in I (again Lemma 3.1). But then by hypothesis either fd ∈ I or ge ∈ I,
contradiction. Hence we must have f ∈ I or g ∈ I.

(3) This is essentially a rephrasement of Lemma 3.1, i.e. that a polynomial is
contained in a homogeneous ideal, if and only if all its homogeneous parts
are contained in it.

By the universal property of the direct sum, the inclusions Id ⊆ I give
rise to a morphism of abelian groups

Φ:
⊕
d≥0

Id → I

(fd)d≥0 7→
∑
d≥0

fd.

We have to show that if I is homogeneous, then Φ is an isomorphism. It
is straightforward to see that Φ is injective, so let us show surjectivity. If
f ∈ I is arbitrary, and f =

∑
d≥0 fd is its decomposition into homogeneous

parts, then by Lemma 3.1 we have fd ∈ I for all d. It immediately follows
that fd ∈ Id for all d, and so f = Φ((fd)d≥0). Hence Φ is an isomorphism.

The statement fails for non homogeneous ideals: take J = ⟨y − x2⟩ ⊆
k[x, y]. Then y and x2 are homogeneous components of an element of J
but they are not in J . In fact, it is straightforward to see that Jd = 0 for
all d, so Φ is not surjective.

(4) We define Γd to be the vector subspace of elements of Γ which have a
representative in k[X1, . . . , Xn]d, i.e.

Γd := (k[X1, . . . , Xn]d + I)
/
I.

Again, by the universal property of the direct sum we obtain an injective
homomorphism of abelian groups

Ψ:
⊕
d≥0

Γd → Γ

(fd + I)d≥0 7→
∑
d≥0

fd + I.
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As in point (3), we want to show that Ψ is surjective, and thus an iso-
morphism. So let f + I ∈ Γ be arbitrary. As usual, we decompose f
into homogeneous parts and write f =

∑
d≥0 fd. Then for all d we have

fd + I ∈ Γd, and clearly Ψ((fd + I)d≥0) = f + I. So Ψ is an isomorphism.
Hence, if we call the elements of Γd the forms of degree d in Γ, we can

decompose every element of Γ into a sum of forms. Furthermore, it is
straightforward to see that if F ∈ Γd and G ∈ Γe, then FG ∈ Γd+e. Hence
this decomposition enjoys analogous properties to the decomposition of
a polynomial into homogeneous parts. Also, we may define the degree
degΓ(f + I) of an element f + I ∈ Γ as the maximal d such that fd+ I ̸= 0
(i.e. fd /∈ I), with the convention degΓ 0 = −∞, and this then has similar
properties as the degree function for polynomials.

Finally, to see that Γd is finite dimensional over k, note that by one of
the isomorphism theorems of modules we have

Γd = (k[X1, . . . , Xn]d + I)
/
I ∼= (k[X1, . . . , Xn]d)

/
Id,

so Γd is a quotient of the finite dimensional k-vector space k[X1, . . . , Xn]d.

Remark. There is a name for rings with a decomposition like k[X1, . . . , Xn]
and Γ: a ring R is called graded, if for all d ≥ 0 there exist additive sub-
groups Rd ⊆ R such that the natural map

⊕
d≥0Rd → R is an isomorphism,

and such that RdRe ⊆ Rd+e for all d, e ≥ 0. The elements of Rd are said
to be homogeneous of degree d. What we showed in point (4) is that the
quotient R/I of a graded ring R by a homogeneous ideal I has a natural
grading, such that the quotient map R → R/I respects the grading.

Exercise 2.
Let R = k[X, Y, Z] and F ∈ R be an irreducible form of degree n ≥ 1. Consider
V = V (F ) ⊆ P2

k and Γ = R/(F ). For d ≥ 0, we denote by Γd the subspace of
forms of degree d in Γ (see previous exercise).

(1) Construct an exact sequence 0 → R
×F→ R → Γ → 0, where ×F denotes

multiplication by F in R.
(2) Show that, for d > n:

dimk(Γd) = dn− n(n− 3)
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Solution 2.
(1) To show that 0 → R

×F→ R → Γ → 0 is exact, we can say that :
• R → R, f 7→ f · F defines a group morphism, injective since F ̸= 0

and R is a domain. The image is (F ).
• (F ) is the kernel of the quotient map R → Γ. Quotient maps are

always surjective.
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(2) Notice that ×F sends Ri to Rn+i, and the quotient map R → Γ sends Ri

to Γi. We hence obtain a sequence

0 → Rd−n
×F→ Rd → Γd → 0

and it is straightforward to check that this is still exact. Hence

dimk(Γd) = dimk(Rd)− dimk(Rd−n)

To conclude, note that the dimension of forms of degree d in k[X0, . . . , XN ]
is given by

(
d+N−1
N−1

)
.

Indeed, a choice of an element of the basis is given by choosing the
position of N − 1 bars separating d stars. For example, ” ∗ ∗| ∗ | ∗ ” would
represent the 4−form x2yz.

Now
(
d+2
2

)
−

(
d−n+2

2

)
gives the desired expression.

Exercise 3. Let V = V (Y −X2, Z −X3) ⊆ A3
k. Show that:

(1) I(V ) = (Y −X2, Z −X3).
(2) ZW − XY ∈ I(V )∗ ⊆ k[X, Y, Z,W ], but ZW − XY /∈ ((Y − X2)∗, (Z −

X3)∗).
In particular, this shows that, for F1, . . . Fr ∈ k[X1, . . . , Xn], the following inclusion
can be strict: (F ∗

1 , . . . , F
∗
r ) ⊆ (F1, . . . , Fr)

∗.

Solution 3.
(1) Set I = (Y − X2, Z − X3). Since k[X, Y, Z]/I ∼= k[X] is reduced, I is

radical, hence I = I(V ).
(2) Note that Z−XY = Z−X3−X(Y −X2) ∈ I, so ZW−XY = (Z−XY )∗ ∈

I∗.
However, (Y −X2)∗ = WY −X2, (Z −X3)∗ = W 2Z −X3. Suppose by

contradiction that there exist F,G ∈ k[X, Y, Z,W ] such that

ZW −XY = F · (WY −X2) +G · (W 2Z −X3).

Taking degree 2 parts of both sides we obtain ZW −XY = F0 · (WY −X2)
which is impossible. Hence ZW −XY /∈ ((Y −X2)∗, (Z −X3)∗)

Exercise 4. Let n ≥ 1 and T : An+1
k → An+1

k be a linear change of coordinates
(i.e. a linear automorphism of kn+1). As it preserves lines through the origin it
induces T : Pn

k → Pn
k , what we call a projective change of coordinates.

(1) Show, that one can send any n+ 1 points in Pn not lying on a hyperplane
to any other n+ 1 points not lying on a hyperplane via a linear change of
coordinates.

(2) Formulate and prove a similar statement for hyperplanes instead of points.
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Solution 4. We denote the natural quotient map by [•] : kn+1 \ {0} → Pn. For a
vector subspace V ⊆ kn+1, we denote by [V ] := [V \ {0}] its image under [•]. Note
that every hyperplane of Pn is of the form [V ] for a n-dimensional subspace [V ].
Indeed, if h ∈ k[X1, . . . , Xn+1] is linear, then it defines a linear map h : kn+1 → k,
and Vp(h) = [ker(h)].

(1) Consider n+1 points P1, . . . , Pn+1 ∈ Pn and choose preimages Pi = [pi]. As
P1, . . . , Pn+1 ∈ [spank{p1, . . . , pn+1}], we must have spank{p1, . . . , pn+1} =
kn+1 (otherwise the points would lie in a hyperplane). That is, p1, . . . , pn+1

is a basis of kn+1.
For another set of points Q1, . . . , Qn+1 ∈ Pn with preimages Qi = [qi], we

also obtain that q1, . . . , qn+1 is a basis of kn+1. Hence if T is the linear map
induced by the change of basis T (pi) = qi, we obtain a projective change
of coordinates T : Pn

k → Pn
k sending Pi to Qi.

(2) Consider n+1 hyperplanes H1, . . . , Hn+1 ⊆ Pn. Let h1, . . . , hn+1 ∈ k[X1, . . . , Xn+1]
be linear forms such that Hi = V (hi) for all i. Notice that any two linear
forms having the same vanishing locus are scalar multiples of each other.
Hence if we write

hi = pi1X1 + · · ·+ pi,n+1Xn+1,

then the point Pi = [pi1 : . . . : pi,n+1] doesn’t depend on the choice of hi, but
only on Hi. To apply point (1), we translate what it means for H1, . . . , Hn+1

if P1, . . . , Pn+1 don’t lie on a common hyperplane: in that case, we saw that
p1, . . . , pn+1 form a basis of kn+1, i.e. the (n+1)× (n+1)-matrix with rows
p1, . . . , pn+1 is invertible. Hence it has trivial kernel, which is equivalent to
say that

{0} =
n+1⋂
i=1

ker(hi),

which in turn is equivalent to

∅ =
n+1⋂
i=1

Hi.

Conversely, if the intersection of the Hi’s is empty, this translates back to
the kernel of the matrix with rows p1, . . . , pn+1 having trivial kernel, so the
rows have to be linearily independent, which means that P1, . . . , Pn+1 don’t
lie on a common hyperplane.

This leads us to formulating the following statement: any n + 1 hy-
perplanes H1, . . . , Hn+1 ⊆ Pn with empty intersection can be sent to any
other n + 1 hyperplanes G1, . . . , Gn+1 ⊆ Pn having empty intersection by
a projective change of coordinates.

The key to translating this back to point (1) is the following: if hi are
linear forms such that Hi = V (hi)for all i, and if T : An+1 → An+1 is
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any linear change of coordinates, then T (Hi) = V (hi ◦ T−1). Note that
if pi ∈ An+1 is the column vector containing the coefficients of hi, then
hi ◦ T−1 is represented by (T−1)⊺ · pi. Therefore, if Pi = [pi] ∈ Pn is the
point representing Hi and Qi ∈ Pn is the point representing Gi, then by
point (1) there exists T̃ such that T̃ (Pi) = Qi for all i, and then T := (T̃ ⊺)−1

will satisfy T (Hi) = Gi for all i.

Remark. The key concept behind the above argument is the following:
denote by (Pn)∗ the set of hyperplanes in Pn. Then there is a bijection
(Pn)∗ ∼= Pn, defined by

(Pn)∗ → Pn

V (p1X1 + · · ·+ pn+1Xn+1) 7→ [p1 : . . . : pn+1].

If T is a projective change of coordinates, then T induces a map (Pn)∗ →
(Pn)∗ by the rule H 7→ T (H). Under the above identification, we saw in
the proof that this map induced by T is in fact (T−1)⊺.

In general, this duality between (Pn)∗ and Pn (in fact we have a canonical
isomorphism Pn → (Pn)∗∗ whereby a point is mapped to the set of hyper-
planes containing it) can be used to transform statements about points in
Pn to statements about hyperplanes and vice versa.

Exercise 5. Show that any two distinct lines in P2
k intersect in one point.

Solution 5. Let L and L′ be two distinct lines in P2. Then there are two-
dimensional vector subspaces V, V ′ ⊆ A3 such that L = [V ] resp. L = [V ′] (see
the beginning of Solution 4 for the notation). It is straightforward to check that

L ∩ L′ = [V ] ∩ [V ′] = [V ∩ V ′].

As L and L′ are distinct, V and V ′ are distinct, and thus we must have V +V ′ = A3.
Hence by the dimension formula we have

dimk(V ∩ V ′) = dimk V + dimk V
′ − dimk(V + V ′) = 2 + 2− 3 = 1.

Hence V ∩ V ′ is a line through the origin, so that [V ∩ V ′] = {P} is a singleton.
That is, P is the unique point of intersection of L and L′.

Exercise 6.
Let m,n ≥ 1 and N = (n + 1)(m + 1) − 1 = mn +m + n. We consider Pn

k with
projective coordinates X0, . . . , Xn, Pm

k with projective coordinates Y0, . . . , Ym and
PN
k with projective coordinates T00, T01, . . . , T0m, T10, . . . , Tnm. We also denote the

affine coverings of Pn
k , Pm

k , PN
k associated to these coordinates as follows: Ui =

{Xi ̸= 0}, Vj = {Yj ̸= 0} and Wij = {Tij ̸= 0}.
Define the Segre embedding S : Pn

k × Pm
k → PN

k by the formula:
S([x0 : . . . : xn], [y0 : . . . : ym]) = [x0y0 : x0y1 : . . . : xnym]
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(1) Show that S is well-defined and injective.
(2) Let Z = V (TijTkl − TilTkj, 0 ≤ i, k ≤ n, 0 ≤ j, l ≤ m) ⊆ PN

k . Show that
S(Pn

k × Pm
k ) = Z (more specifically, S(Ui × Vj) = Z ∩Wij for all i, j).

(3) Show that the topology induced on Pn
k ×Pm

k by the Zariski topology of PN
k

via the Segre embedding is different from the product topology.

Solution 6.
(1) To see that S is well-defined, note that

((λx0)y0, (λx0)y1, . . . , (λxn)ym) = λ(x0y0, x0y1, . . . , xnym)

and similarily if we replace (y0, . . . , ym) by a scalar multiple. Hence the RHS
in the definition of S doesn’t depend on the choices of representatives, i.e.
S is well-defined.

To see that S is injective, assume S([x], [y]) = S([x′], [y′]). Take i, j such
that xi ̸= 0 and yj ̸= 0. Without loss of generality, we may assume xi = 1
and yj = 1. Then x′

iy
′
j = xiyj = 1 ̸= 0 and thus x′

i ̸= 0. But then for all l,
we have y′l = λyl so y = y′. Apply the same argument to yj to get x = x′.

(2) If hijkl denotes the polynomial TijTkl − TilTkj, we have

hijkl(x0y0, x0y1, . . . , xnym) = (xiyj)(xkyl)− (xiyl)(xkyj) = 0.

Hence the image of S is contained in Z.
If xi ̸= 0, yj ̸= 0 then S(x, y)ij = xiyj ̸= 0. Hence S(Ui ∩ Vj) ⊆ Wij and

thus S(Ui ∩ Vj) ⊆ Z ∩Wij by the above.
For the reverse inclusion, let [z] = [z00, z01, . . . , zmn] ∈ Z ∩ Wij. As

zij ̸= 0, we may assume zij = 1. Set for all i′,

xi′ := zi′j

and for all j′,
yj′ := zij′ .

We then obtain
zij︸︷︷︸
=1

zi′j′ = zi′jzij′ = xi′yj′

for all i′, j′, i.e. S([x], [y]) = [z]. As xi = yj = 1 we have [x] ∈ Ui and
[y] ∈ Vj, so we conclude Z ∩Wij ⊆ S(Ui × Vj).

In conclusion we have Z∩Wij = S(Ui×Vj) for all i, j, which in particular
shows that S(Pn × Pm) = Z.

(3) We can use the familiar example of the diagonal ∆ ⊆ An ×An, which isn’t
closed for the product topology (as An isn’t Hausdorff by Exercise 3.3.2),
but which is closed for the Zariski topology. The key in this is that An

is irreducible, so any two non-empty open subsets intersect non-trivially.
The same is true in Pn, so the diagonal ∆ ⊆ Pn × Pn is not closed for the
product topology.
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Assume without loss of generality that n ≤ m, and consider the subset
∆′ := {([x0 : . . . : xn], [x0 : . . . : xn : 0 : . . . : 0]) | [x0 : . . . : xn] ∈ Pn} ⊆ Pn × Pm.

There is a closed embedding Pn → Pm sending [x0 : . . . : xn] to [x0 : . . . :
xn : 0 : . . . : 0], which induces a closed embedding i : Pn×Pn → Pn×Pm for
the product topology. As i−1(∆′) = ∆ which isn’t closed for the product
topology, we conclude that ∆′ isn’t closed for the product topology either.

Nonetheless, let us show that S(∆′) is Zariski closed in PN . Indeed, it is
a straightforward calculation to show that

S(∆′) = Z ∩ V (Tij | n ≤ j ≤ m) ∩ V (Tij − Tji | 0 ≤ i, j ≤ n).

In conclusion, ∆′ ⊆ Pn×Pm is closed for the topology induced by the Zariski
topology on PN under S, but it isn’t closed for the product topology.
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