ALGEBRAIC CURVES : SOLUTIONS SHEET 5

Unless otherwise specified, k is an algebraically closed field.

Exercise 1. Let n>1and I,J C k[X,...,X,] be ideals. For d > 0 we denote
by k[Xo, ..., X,|q the subspace of forms of degree d and I, = I N k[Xo, ..., X4
(resp. Jq = J Nk[Xo,...,Xp|q). Show that:

(1) If I, J are homogeneous, then I + J, I.J and rad(I) are homogeneous.

(2) If I is homogeneous, I is prime if, and only if, for all homogeneous f,g €
k[Xo,....Xy|, fegel= felorgel.

(3) I is homogeneous if, and only if, I = @ ., 4 (the right-hand side being
a direct sum of abelian groups). Give an example of how this fails for
non-homogeneous ideals.

(4) If I is homogeneous, then there is a well-defined notion of forms of degree
din ' = k[Xo,...,X,]/I and the corresponding spaces I'y, d > 0 are
finite-dimensional over k.

Solution 1.

(1) Assume I, J homogenous. Fix homogenous generators fi, ..., f, of I and
915, 9n of J. Then
1T =(figj | i,7)
are also homogenous, as products of homogenous polynomials are also ho-
MOgenous.

Finally, to prove that Rad(/) is homogeneous, recall that a polynomial
is contained in a homogeneous ideal I if and only if all of its homogeneous
parts are contained in [ (Lemma 3.1). Let F' = Fy + --- + F; be an
element of Rad(/) where F; is the homogeneous part of degree i. Suppose

by contradiction that there exists i with F; ¢ Rad([/). If d' is the maximal
such i, then

€Rad(I)  cRad(I) €Rad(I)

Hence we may assume that d = d, i.e. F; ¢ Rad(l). Let now N > 0
be large enough so that FN € I. As I is homogeneous, it contains all
the homogeneous parts of FV (by Lemma 3.1). The homogeneous part of
degree Nd of FN is F¥ so FY¥ € I. In particular, we have F; € Rad([),
contradiction. Therefore, all the F; have to be contained in Rad (/) to begin

with, i.e. Rad([) is homogeneous.
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(2)

(4)

Clearly, I prime implies for all homogeneous f,g € k[Xy,...,X,], fg €
I=felorgel.

Now suppose that I is an homogenous ideal, such that for all homo-
geneous f,g € k[Xo,...,X,], fg € I = f € Torg € I. Let f,g €
k[Xo,...,Xn] be such that fg € I. Take their decomposition into ho-
mogenous components f = Z?:o fi and g = > ¢, g;, where f;, g; are
homogenous of degree i. Assume by contradiction that f,g ¢ I. Then by
Lemma 3.1 there exist d’, ¢’ such that fy,g. ¢ I, and as in the proof that
Rad(I) is homogeneous we may suppose that in fact d = d and ¢/ = e. As
fg € I, the homogeneous part of degree de of fg, which is f;g., is contained
in I (again Lemma 3.1). But then by hypothesis either f; € I or g. € I,
contradiction. Hence we must have f € [ or g € I.

This is essentially a rephrasement of Lemma 3.1, i.e. that a polynomial is
contained in a homogeneous ideal, if and only if all its homogeneous parts
are contained in it.

By the universal property of the direct sum, the inclusions I; C I give
rise to a morphism of abelian groups

We have to show that if I is homogeneous, then ® is an isomorphism. It
is straightforward to see that ® is injective, so let us show surjectivity. If
f € Iis arbitrary, and f =) ., fa is its decomposition into homogeneous
parts, then by Lemma 3.1 we have f; € I for all d. It immediately follows
that f; € I, for all d, and so f = ®((f4)a>0). Hence @ is an isomorphism.
The statement fails for non homogeneous ideals: take J = (y — z?) C
k[z,y]. Then y and x? are homogeneous components of an element of .J
but they are not in J. In fact, it is straightforward to see that J; = 0 for
all d, so @ is not surjective.
We define I'; to be the vector subspace of elements of I' which have a
representative in k[ Xy, ..., X,]q4, i-e.

r, = (k[xl,...,xn]du)/].

Again, by the universal property of the direct sum we obtain an injective
homomorphism of abelian groups

U @Fd—w

(fd‘l‘[)dzo —> Zfd+[
4>0
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As in point (3), we want to show that W is surjective, and thus an iso-
morphism. So let f 4+ I € I' be arbitrary. As usual, we decompose f
into homogeneous parts and write f = > ., fg. Then for all d we have
fa+ 1 €Ty, and clearly W((f;+ I)gs0) = f + 1. So ¥ is an isomorphism.

Hence, if we call the elements of I'; the forms of degree d in ', we can
decompose every element of I' into a sum of forms. Furthermore, it is
straightforward to see that if F' € I'y and G € I'¢, then F'G € I'y,.. Hence
this decomposition enjoys analogous properties to the decomposition of
a polynomial into homogeneous parts. Also, we may define the degree
degp(f + 1) of an element f+ I € I" as the maximal d such that f;+1 #0
(i.e. fg ¢ I), with the convention degp 0 = —oo, and this then has similar
properties as the degree function for polynomials.

Finally, to see that ['; is finite dimensional over k, note that by one of
the isomorphism theorems of modules we have

r, = (k[Xl,...,Xn]d+I)/[ ~ (k[X,. .. ,Xn]d)/[d,

so I'y is a quotient of the finite dimensional k-vector space k[X7, ..., X,]q4.

Remark. There is a name for rings with a decomposition like k[ X7, ..., X,,]
and I': a ring R is called graded, if for all d > 0 there exist additive sub-
groups Ry C R such that the natural map €., Rs — R is an isomorphism,
and such that B4R, C Ry, for all d,e > 0. The elements of Ry are said
to be homogeneous of degree d. What we showed in point (4) is that the
quotient R/I of a graded ring R by a homogeneous ideal I has a natural
grading, such that the quotient map R — R/I respects the grading.

Exercise 2.

Let R = k[X,Y, Z] and F' € R be an irreducible form of degree n > 1. Consider
V=V(F)CP;and T = R/(F). For d > 0, we denote by I'y the subspace of
forms of degree d in I' (see previous exercise).

(1) Construct an exact sequence 0 — R X R - T — 0, where xF denotes
multiplication by F'in R.

(2) Show that, for d > n:

Solution 2.

(1) To show that 0 - R 'R — T — 0is exact, we can say that :
e R - R, f— f-F defines a group morphism, injective since F' # 0
and R is a domain. The image is (F).
e (F) is the kernel of the quotient map R — I'. Quotient maps are

always surjective.
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(2) Notice that x F' sends R; to R, ;, and the quotient map R — T" sends R;
to I';. We hence obtain a sequence

0= Ryn Z Ry —Ty—0
and it is straightforward to check that this is still exact. Hence
dlmk(Fd) = dlmk(Rd) - dimk(Rd_n)

To conclude, note that the dimension of forms of degree d in k[ Xy, ..., Xy]
is given by (d;ﬁ Il)

Indeed, a choice of an element of the basis is given by choosing the
position of N — 1 bars separating d stars. For example, ” % %| % | x” would
represent the 4—form z%yz.

Now (d;r2) - (d*g”) gives the desired expression.

Exercise 3. Let V=V (Y — X? Z — X3) C A}. Show that:
(1) I(V)= (Y — X2, Z — X3).
(2) ZW — XY € [(V)* CKk[X,Y,Z, W], but ZW — XY ¢ ((Y — X?)*,(Z —
X3)%).
In particular, this shows that, for Fy,... F,. € k[X}, ..., X,], the following inclusion
can be strict: (Fy,...,F}) C (Fy,..., F)"

Solution 3.
(1) Set I = (Y — X?,Z — X?). Since k[X,Y,Z]/I = k[X] is reduced, I is
radical, hence I = I(V).
(2) Note that Z— XY = Z— X3~ X(Y—X?) € I, 50 ZW—XY = (Z—XY)* €
I~
However, (Y — X?2)* = WY — X? (Z — X3)* = W2Z — X3. Suppose by
contradiction that there exist F, G € k[X,Y, Z, W] such that

IW - XY =F- (WY - X))+ G- (W?Z — X?).

Taking degree 2 parts of both sides we obtain ZW — XY = F,- (WY — X?)
which is impossible. Hence ZW — XY ¢ ((Y — X?)*, (Z — X?)*)

Exercise 4. Let n > 1 and T : AP*" — A?™ be a linear change of coordinates
(i.e. a linear automorphism of k"'). As it preserves lines through the origin it
induces 1" : P} — P}, what we call a projective change of coordinates.

(1) Show, that one can send any n + 1 points in P" not lying on a hyperplane
to any other n 4 1 points not lying on a hyperplane via a linear change of
coordinates.

(2) Formulate and prove a similar statement for hyperplanes instead of points.
4



Solution 4. We denote the natural quotient map by [e]: k"1 \ {0} — P". For a
vector subspace V' C k"™ we denote by [V] := [V \ {0}] its image under [e]. Note
that every hyperplane of P" is of the form [V] for a n-dimensional subspace [V].
Indeed, if h € k[X1,..., X,;1] is linear, then it defines a linear map h: k"' — k,
and V,(h) = [ker(h)].

(1)

Consider n+1 points Py, ..., P,+; € P* and choose preimages P; = [p;]. As
Pr, ..o Py € [spang{p1, ..., pay1}], we must have span,{p1,...,po+1} =
k"1 (otherwise the points would lie in a hyperplane). That is, p1, . .., Pni1
is a basis of k"1,

For another set of points @1, ..., Q,+1 € P" with preimages Q; = [g;], we

also obtain that q;, ..., gn,11 is a basis of k"1, Hence if T is the linear map
induced by the change of basis T'(p;) = ¢;, we obtain a projective change
of coordinates T': P} — P} sending P; to @);.
Consider n+1 hyperplanes Hy, ..., H,1 1 CP" Let hy, ..., hpi1 € k[ Xy, ...
be linear forms such that H; = V'(h;) for all i. Notice that any two linear
forms having the same vanishing locus are scalar multiples of each other.
Hence if we write

hi =puXi+ -+ Pint1Xni1,

then the point P; = [p;1 : ... : p;ins1) doesn’t depend on the choice of h;, but
only on H;. To apply point (1), we translate what it means for Hy, ..., H, 41
if P,..., P,y1 don’t lie on a common hyperplane: in that case, we saw that
D1, -, Pny1 form a basis of k"1 i.e. the (n+1) x (n+1)-matrix with rows
P1, - - -, Pnst is invertible. Hence it has trivial kernel, which is equivalent to
say that

n+1

{0} = ﬂ ker(h;),

which in turn is equivalent to
n+1

i=1

Conversely, if the intersection of the H;’s is empty, this translates back to
the kernel of the matrix with rows py, ..., p,41 having trivial kernel, so the
rows have to be linearily independent, which means that P, ..., P11 don’t
lie on a common hyperplane.

This leads us to formulating the following statement: any n + 1 hy-
perplanes Hy,..., H,y; C P" with empty intersection can be sent to any
other n 4+ 1 hyperplanes G4y, ..., G,1 € P" having empty intersection by
a projective change of coordinates.

The key to translating this back to point (1) is the following: if h; are

linear forms such that H; = V/(h)for all ¢, and if T: A" — A" s
5
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any linear change of coordinates, then T'(H;) = V(h; o T~!). Note that
if p; € A" is the column vector containing the coefficients of h;, then
h; o T! is represented by (T!)T - p;. Therefore, if P, = [p;] € P" is the
point representing H; and (); € P" is the point representing G;, then by
point (1) there exists T such that T'(P;) = Q; for all i, and then T' == (7)™}
will satisfy T'(H;) = G; for all 4.
Remark. The key concept behind the above argument is the following:
denote by (P™)* the set of hyperplanes in P". Then there is a bijection
(P™)* =2 P, defined by
(P")" — P
V(p1X1 =+ .. +pn+1Xn+1) — [pl L. pn+1].

If T is a projective change of coordinates, then T" induces a map (P™)* —
(P™)* by the rule H — T'(H). Under the above identification, we saw in
the proof that this map induced by T is in fact (7!)T.

In general, this duality between (P")* and P" (in fact we have a canonical
isomorphism P" — (P")** whereby a point is mapped to the set of hyper-

planes containing it) can be used to transform statements about points in
P" to statements about hyperplanes and vice versa.

Exercise 5. Show that any two distinct lines in P4 intersect in one point.

Solution 5. Let L and L’ be two distinct lines in P2. Then there are two-
dimensional vector subspaces V, V'’ C A3 such that L = [V] resp. L = [V'] (see
the beginning of Solution 4 for the notation). It is straightforward to check that

LNL =[VIn[V]=[VnV].

As L and I/ are distinct, V and V' are distinct, and thus we must have V+V’ = A3,
Hence by the dimension formula we have

Hence V N V' is a line through the origin, so that [V NV’| = {P} is a singleton.
That is, P is the unique point of intersection of L and L'.

Exercise 6.

Let myn>1and N = (n+1)(m+1) — 1 = mn+ m + n. We consider P} with
projective coordinates Xy, ..., X, P} with projective coordinates Yy, ...,Y,, and
Pff with projective coordinates Tog, To1, - - -5 Tom, 10, - - -, Tum- We also denote the
affine coverings of P, PP, PY associated to these coordinates as follows: U; =
{Xi # 0}, V; ={Y; # 0} and Wj; = {T}; # 0}.

Define the Segre embedding S : P} x P — PY by the formula:

S([xo: .. @], [yo : - :ymg): [Zoyo : Toy1 + - TpYm)



(1)
(2)

(3)

Show that S is well-defined and injective.

Let Z = V(T;;Tw — TuTy;, 0 < i,k <mn, 0<j1<m)CPy. Show that
S(Pp x P}') = Z (more specifically, S(U; x V;) = ZNW,; for all i, 7).
Show that the topology induced on P? x P by the Zariski topology of P&
via the Segre embedding is different from the product topology.

Solution 6.

(1)

To see that S is well-defined, note that

((/\iﬂo)yo, ()\ffo)yl, ceey ()‘xn)ym) = /\(iﬂoyo, ToYi, .- - 7xnym)

and similarily if we replace (yo, . . ., ym) by a scalar multiple. Hence the RHS
in the definition of S doesn’t depend on the choices of representatives, i.e.
S is well-defined.

To see that S is injective, assume S([z], [y]) = S([2'],[¢/]). Take ¢, j such
that z; # 0 and y; # 0. Without loss of generality, we may assume z; = 1
and y; = 1. Then z}y; = x;y; = 1 # 0 and thus 2} # 0. But then for all [,
we have y; = Ay; so y = ¢/. Apply the same argument to y; to get = '
If hijr denotes the polynomial T;;Ty; — 15T}, we have

hijkl(xoyo, ToY1s - -+ TnlYm) = (xiyj)(xkyl) - (xiyl)(xkyj) =0.

Hence the image of S is contained in Z.

If 2; # 0, y; # 0 then S(z,y);; = z;y; # 0. Hence S(U; N'V;) C W;; and
thus S(U; N'V;) C Z N W;; by the above.

For the reverse inclusion, let [z] = [200, 201, -+ 2mn] € Z N W;;. As
z;j # 0, we may assume z;; = 1. Set for all 7/,

Ty = Zirj
and for all j’,
yj = Zigl -
We then obtain
Rij Riljl = ZiljRig = Tyl
=1

for all .5, i.e. S([z],[y]) = [2]. As x; = y; = 1 we have [z] € U; and
[y] € V;, so we conclude Z N W;; C S(U; x V).

In conclusion we have ZNW;; = S(U; x Vj) for all 4, j, which in particular
shows that S(P™ x P™) = Z.
We can use the familiar example of the diagonal A C A™ x A", which isn’t
closed for the product topology (as A" isn’t Hausdorff by Exercise 3.3.2),
but which is closed for the Zariski topology. The key in this is that A"
is irreducible, so any two non-empty open subsets intersect non-trivially.
The same is true in P", so the diagonal A C P" x P" is not closed for the

product topology.
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Assume without loss of generality that n < m, and consider the subset

A ={([wg:...:x),[wo: iy :0: .20 | [wg: ...t 2, €PPF CPY X P™.
There is a closed embedding P* — P™ sending [zg : ... : @) to [xg : ... :
xp 2 0:...:0], which induces a closed embedding i: P x P" — P" x P™ for

the product topology. As i"}(A’) = A which isn’t closed for the product
topology, we conclude that A’ isn’t closed for the product topology either.

Nonetheless, let us show that S(A’) is Zariski closed in P¥. Indeed, it is
a straightforward calculation to show that

S(AY=ZNV(Ty | n<j<m)NV(Ty;—Ty|0<i,5<n).

In conclusion, A" C P*xP™ is closed for the topology induced by the Zariski
topology on PV under S, but it isn’t closed for the product topology.



